
 IP Fragmentation 
Implementation scheme

Mon, June 26, 1992

Internet Protocol (IP) specifies support for fragmentation and reassembly of packets to form 
datagrams. The implementation for IP support in the local stations must include this feature. This 
note discusses how it is done.

Maximum datagram size
Theoretically an IP datagram, including the IP header plus message, can be 64K bytes in 

length. In practice, however, some implementations put a smaller upper limit for reasons of 
memory constraints and economy. According to Douglas Comer, a general expert in the field, 
timesharing systems typically choose values in the range of 4K–8K bytes. (See “Internetworking 
with TCP/IP Volume II” page 32.) With the token ring 4Mb network, the hardware frame length 
limit is about 4K bytes, so it is natural to consider adopting a local limit of 4K bytes for the 
maximum datagram size. The ethernet frame size limit is 1500 bytes, which is too low to consider 
for a datagram size limitation.

A limit of about 2004 bytes is detectible sending “multinet ping” requests from the Vax. (It may 
only be a ping client program limit.) The Vax limit on datagram replies to ping requests is at least 
5000 bytes, the limit of the local station’s current software. The Vax’s UDP echo server limit seems 
to be 4144 bytes.

MTU size
Separate from the issue of datagram size limit is the choice of Maximum Transmission Unit, 

or MTU. This is the limit on fragment size transmitted on a physical network. With ethernet 
networks this limit is almost always 1500 bytes, the same as the hardware frame limit. In the Sun 
that uses the SBus token ring board, the MTU seems to be 2044 bytes for the size of the IP datagram. 
From RFC-1122, it is recommended that one choose an MTU for use with foreign networks 
(destination network id different from local) that is 576 bytes, a generally acceptable limit in use 
throughout the world-wide Internet. From tests with some far-away IP nodes, however, it seems 
that 1448 byte datagrams work without further fragmentation being imposed.

Whatever the local decision is regarding maximum datagram size and MTU, it is necessary to 
support reassembly of IP packet fragments. So this support is needed for the local station IP 
support software.

Reassembly
The local station uses the IPARP table to hold IP addresses and hardware addresses and 

related port#s. The IP address is the key to this table. An entry in this table is given by a pseudo 
node# word, which is an index to a table entry and also identifies a port#; thus, it fulfills a function 
analogous to a socket.

When an IP fragment is received, specified by the MF (more fragments) bit set in the IP header 
and/or a nonzero fragment offset value, something special must be done with it; otherwise, it 
simply remains in the DMA buffer written into by the chipset to await higher level processing. To 
support fragments, it is necessary to use a timeout in case not all fragments arrive that are to build 
a datagram. After each fragment is received, the timer should be reset. A timeout commonly in use 
is about 60 seconds. After a timeout, the fragments must be discarded. (If fragment #0 has been 
received at that time, then an ICMP “time exceeded” error message is sent to the source host. See 
RFC-1122.) The point is that fragments may have to wait a long time before they can be built into a 
datagram, so they cannot remain in the 64K DMA buffer, which can wrap in a second or so under 
heavy traffic. Allocated memory can hold the fragment for later reassembly.



It is not convenient to build the datagram as the fragments are received, because the total size of 
the expected datagram is unknown until the last fragment has been received that has a zero MF bit. 
If one allocates a datagram buffer of maximum size, however, it should be possible to do assemble 
the packets as they are received. To make it more interesting, the order of fragment arrival is not 
guaranteed, although this is not expected to be a problem within Fermilab.

If the maximum size buffer allocation is not used, then one can build a linked list for each 
datagram whose fragments are in the process of being collected. Fragments belong to the same 
datagram if they have the same source IP address and the same identification word in the 
fragment’s IP header. The linked list can be maintained in order of fragment offset to simplify 
detection of the point at which all fragments have been received. When the datagram is complete, 
another area of memory can be used to hold the complete datagram, as higher level processing 
must see the entire datagram in contiguous memory.

In the local station implementation, the SNAP Task handles IP received packet processing. If the 
routine that processes a fragment detects a completed datagram, it assembles it and sends a 
reference message about it to the SNAP message queue, just as the token receive interrupt routine 
normally does when it receives a SNAP frame. (The SNAP protocol SAP# 0xAA is used currently only 
for IP and ARP packets on token ring.) Then SNAP will notice a larger-than-normal datagram that is 
unfragmented and process it normally. For either ICMP or UDP datagrams, the checksum will be 
done on the entire datagram.

Fragmentation
Although gateways will fragment datagrams as needed, it is considered kind for hosts to 

fragment outgoing datagrams so that gateways can pass the fragments without having to further 
trim their sizes. Fragmentation support is required to support datagram sizes that exceed the local 
network frame size limit.

Conceptually the matter of fragmentation is easier than reassembly. When a datagram is prepared 
to be sent, the transmit logic decides, based upon the destination IP address, that an MTU should be 
applied that is smaller than the datagram size. In this case, separate frames are built for each 
fragment, each one with an IP header. Each is queued in turn to the network hardware.

When fragmentation is applied, the message part of the fragment—except for the final one—must 
be a multiple of 8 bytes in size. (This is required because the fragment offset field in the IP header is 
expressed in 8-byte units.) Since the IP header part of the fragment is typically 20 bytes long, the 
maximum fragment size may be slightly smaller than the MTU. (This insures that the implementer 
is paying attention.)

The NetXmit routine assembles queued network messages into frames for delivery to the network 
hardware. When it has prepared the frame completely, it can make the decision on fragmentation. 
If the network id in the destination IP address is the local network, a different MTU is used from 
that used when the network is foreign. Use of different MTU values for both the local subnet and 
the rest of the Fermilab network is also supported.

Since the complete datagram is already assembled in the frame buffer ready to be transmitted 
before it is determined that it must be fragmented, the first fragment can be sent from the first part 
of the datagram, after adjusting for the fragment size in the IP header, setting the MF bit, and 
recalculating the IP checksum. The additional fragments can be built into new frame buffer space 
by copying the frame/IP/SNAP headers and the next fragment-size part of the message.

IP Fragmentation p. 2


